Links, bridge number, and width trees

نویسندگان

چکیده

To each link $L$ in $S^{3}$ we associate a collection of certain labelled directed trees, called width trees. We interpret some classical and new topological invariants terms these trees show how the geometric structure can bound values from below. also that tree is associated with knot if it meets high enough “distance threshold” is, up to equivalence, unique realizing invariants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Thurston-bennequin Number of Two-bridge Links

We compute the maximal Thurston-Bennequin number for a Legendrian two-bridge knot or oriented two-bridge link in standard contact R, by showing that the upper bound given by the Kauffman polynomial is sharp. As an application, we present a table of maximal Thurston-Bennequin numbers for prime knots with nine or fewer crossings.

متن کامل

Boundary Slopes of 2-Bridge Links Determine the Crossing Number

A diagonal surface in a link exterior M is a properly embedded, incompressible, boundary incompressible surface which furthermore has the same number of boundary components and same slope on each component of ∂M . We derive a formula for the boundary slope of a diagonal surface in the exterior of a 2-bridge link which is analogous to the formula for the boundary slope of a 2-bridge knot found b...

متن کامل

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

متن کامل

Linear Rank-Width and Linear Clique-Width of Trees

We show that for every forest T the linear rank-width of T is equal to the path-width of T , and the linear clique-width of T equals the path-width of T plus two, provided that T contains a path of length three. It follows that both linear rank-width and linear clique-width of forests can be computed in linear time. Using our characterization of linear rank-width of forests, we determine the se...

متن کامل

Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Mathematical Society of Japan

سال: 2023

ISSN: ['1881-1167', '0025-5645']

DOI: https://doi.org/10.2969/jmsj/86158615